Hydrogen; the Bridge between Africa and Europe

18-10-2019

Prof. Dr. Ad van Wijk

Challenge the future

Delft University of Technology

Hearing Frans Timmermans 9-10-2019

Energy Consumption EU in 2017

2017 EU 28	Mtoe	TWh
Gross Available Energy	1,719	19,993
- International Maritime Bunkers	- 45	- 523
Gross Inland Consumption	1,663*	19,341
- Feedstock	- 102	- 1,191
Primary Energy Consumption	1,561	18,150
- Conversion losses energy sector	- 438	- 5,094
Final Energy Consumption	1,123	13,056
*Ambient heat (11 Mtoe) is also subtracted	Figures fro	m Eurostat 2019

A Clean Planet for All

Fuel mix for Gross Inland Consumption EU28, projected for 2050, for different scenarios from the EU document 'A clean planet for all' (European Commission 2018)

TUDelft

European Wind Speed European Solar Energy

EU Solar and Wind Energy in 2050

Scenario	Solar Energy [TWh/a]	Wind Energy [TWh/a]	Solar Capacity [GW]	Wind Capacity [GW]
Shell Sky Scenario	3,472	3,089	2,300	1,000
DNV GL Energy Transition Outlook 2018	1,077	1,662	718	554
LUT/EWG			2,000	560

Solar and wind energy in the European Union in 2050, according to several scenario's

EU 2050; 100% renewable energy supply

- 1. Final energy demand in 2050 = 12.000 TWh
 - 50% electricity
 - 50% hydrogen
- 2. Re-use and expand gas infrastructure and storage
 - For hydrogen transport
 - For hydrogen storage
- 3. Europe and North Africa join hands in green hydrogen

Levelized Cost of Electricity

Source: IRENA Renewable Cost Database and Auctions Database.

IRENA, January 2018, Renewable Power Generation Costs 2017

Hydrogen production cost; LCoH

Notes: MWh = megawatt hour. Based on an electrolyser efficiency of 69% (LHV) and a discount rate of 8%.

Source: IEA 2019. All rights reserved.

Future levelized cost of hydrogen production by operating hour for different electrolyser investment costs (left) and electricity costs (right), from The Future of Hydrogen (IEA 2019) (LHV efficiency 69% is HHV efficiency 81%)

		, ,	
Ť UDelft	Hydrogen	10	

/kg = 0,025 \$/kWh

20 MW Alkaline Electrolyser

	5 MW module	20 MA module		BUILDING	
Besign capacity Hy	3030 Netts	4000 No 179			
Etimica mitrolycer (IIC)	1.82%mm*	18257		Contract of the second se	
Power consumption (DC)	max, 4,3 480,704° Hz	max, 4.3 1000/161/16,			
Water consumption	= (L/Meri ¹ H ₀	= [1.9km/* H]_	00		
Signatured approximate eventually	30%-100%	30% - 100%			
Hy predact matter at electrolyter pullar	 Init tech querity (dry form)) 	> 81.00% purity bits have?			
Hy product quality after manneri (optional)	as required by concerns, up to 99,9958 %.	as required by currents, up to 91,0000 %.			
Ny product process at mediate suclei	-300 mbai	-500 mbar			
Conversion and an and a second s	- apr no. 600 °C	apria 90 °C			

 HMV is particulated with reference to trapher hearing value of Authorgen, All values may vary depending on operating conditions.

Hydrogen via Gas Infrastructure

Hydrogen backbone infrastructure

Natural gas infrastructure in Europe (blue and red lines) and first outline for a hydrogen backbone infrastructure (orange lines). The main part of the hydrogen backbone infrastructure consists of re-used natural gas transport pipelines with new compressors. A new pipeline from the solar and wind resource areas in Greece needs to be realized.

Europe North-Africa Hydrogen backbone

15

first outline for a hydrogen backbone infrastructure Europe-North Africa. An existing gas infrastructure from Algeria and Morocco could be converted to a hydrogen infrastructure (grey-orange lines). A "new" hydrogen transport pipeline must be realized from Italy to Greece, crossing the Mediterranean Sea to Egypt, which could eventually be extended to the Middle East (orange line).

Hydrogen

TUDelft

Gas and electricity consumption in the Netherlands

Solar power production in Germany

10 Delft

Gas storage capacity in Europe

	BCM	TWh
Gas consumption EU 2017	493	4.820
Gas storage capacity EU 2017	89,2	871
Gas storage capacity Germany	21,8	213
Gas storage capacity the Netherlands	13,4	130
EU gas storage capacity/consumption	18%	

Hydrogen storage in Salt Caverns

1 salt cavern can contain 3,000-6,000 ton hydrogen (100 million Euro) Equivalent of 120-240 GWh or 8,5-17 million home batteries (14 kWh) (12-24 billion Euro)

Salt formations and caverns in Europa

Red colored caverns in use for natural gas storage

Potential for Hydrogen Storage in Salt Caverns Onshore

TUDelft

Hydrogen

Constrained

Offshore

104

EU 2050	TOTAL (GW)	Europe (GW)	North Africa (GW)	
Production				
Solar	4,200	2,000	2,200	
Wind	1,800	1,300	500	
Conversion				
Electrolyser	3,400	700	2,700	
Fuel cell	500	500		
Infrastructure				
Hydrogen Pipelines	1,000 GW pipeline between Africa-Europe			
Storage				
Salt Caverns (number)	15,000	10,000	5,000	
Č UDelft	Hydrogen	20		

Further reading about hydrogen www.profadvanwijk.com

